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LAMINAR FLOW NATURAL CONVECTION
FROM THE OPEN VERTICAL CYLINDER WITH
UNIFORM HEAT FLUX AT THE WALL

H. J. HETHERINGTON* and T. D. PATTENYT
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Abstract—A solution is obtained for fully developed fiow of a constant-property fluid, with the lowest
temperature equal to the fluid bulk temperature. This is satisfactory only for low values of Rayleigh
number, up to about 20, that is, for relatively long cylinders.

A second solution has in addition a thermal entry region, for application to shorter cylinders, to
the point where the entry region fills the cylinder. This solution has not yet been made mathematically
exact. Nusselt numbers up to the terminal point, at Rayleigh number of about 16000, are identical with

those for the finite difference result of Dyer [6].

NOMENCLATURE Dimensionless quantities
a, cylinder radius; r . .
c specific heat; R, == radial co-ordinate;
d, diameter; 4
e, axial temperature gradient; A, = (g_ﬁeg__) form parameter;
g, gravitational acceleration: &
h, overall heat-transfer coefficient == %; u, = — axial velocity;
ax
k, thermal conductivity; ¢ .
l cylinder height: D, = ——, radial temperature;
3 max
P, pressure; i
q, heat flux at wall; e, = e temperature difference;
r, radial co-ordinate; X
L temperature, measured from fluid bulk E, _ Qe . heat supply in entry region;
temperature; Ow
u, velocity in x-direction; x . .
X, axial co-ordinate; X, = £ axial co-ordinate;
D, derivative;
v, constant in equation (14); T, = , conventional temperature;
Qw, total heat flow across walls: max
,  total heat supply at t . 9Bqd®
Qe pply at the entry plane Gr, = —icizi , Grashof number;
. v
Greek symbols gd
o o k Nu, = — Nusselt number;
o, thermal diffusivity, = —; 6k
pc ﬁdl
B. volume thermal expansivity; Re, = < Reynolds number;
6, mean temperature difference between v
. . ) v
cylinder and fluid bulk; Pr,  =—, Prandtl number;
i dynamic viscosity; o
. .. , M Ra = GrPr, Rayleigh number;
v, kinematic viscosity, = = ’ iy ’
Y P Pe, = RePr, Péclet number.
P, mass density;
@, radial terpperature component; INTRODUCTION
K, constant in equation (15).

THE SYSTEM treated is a vertical cylinder open at both
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ends to a large free volume of essentially isothermal
fluid, with a heat flux at the cylinder walls.

tProfessor of Mechanical Engineering, Heriot-Watt Uni- In a very narrow cylinder, with parabolic velocity
versity, Riccarton, Currie, Edinburgh, EH14 4AS, Scotland.  profile, fluid temperature differing very little from the
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wall temperature. and wall temperature increasing
linearly with height, it is quite easily shown that

_ . gbd?
=3y

9Bkd’

VX

f (1)

i

0. (2)

q=1g

These equations may also be written
Pe = }Ra?* (3)
Nu = §Rat. 4

The parameters have the particular forms appropriate
for the present system. These conditions are applicable
only for small values of Ra, up to about 3.

A complete solution for natural convection in cylin-
ders will cover a range of Rayleigh numbers from the
long narrow cylinder, at low values, through shorter
or wider cylinders, to the vertical plane wall, at high
values of Ra. Some relations of this kind were presented
by Elenbaas [1], including one for the isothermal cyl-
inder. But due to analytical difficulties these were on
a very empirical basis. Information is given for overall
heat transfer, but very little on fluid velocities or
temperatures.

Sparrow and Gregg [2] have given a similarity solu-
tion for the vertical wall with uniform heat flux. For
the local convection coefficient h,, at distance x from
the foot of the wall, when Pr = 0.7,

hyx x*\ ¢
: =0.48<"”;‘v’z ) ()

Integration over the whole height [ gives for the mean
convection coefficient &

hl 14\
- 0.576(”B kl > . 6)

kv?

Transformation into Nu and Gr for the cylinder does
not alter the constant 0.576, but it has to be divided
by Prt = 0.931 to give

Nu = 0.619Ra}. (7

Solutions for steady natural convection in a closed
region with fully-developed flow and uniform heat
generation were given by Woodrow [3], firstly between
wide vertical plane walls, and secondly inside a vertical
cylinder. The rectangular co-ordinate part of this work
was adapted to the open-ended system without heat
generation by Wordsworth [4]. In the present paper a
similar adaptation is made of Woodrow’s cylindrical
co-ordinate solution.

THEORY FOR FULLY DEVELOPED FLOW

The idealisations are made that fluid density varies
only in forming a buoyancy term, other properties do
not change with temperature or pressure, viscous dissi-
pation is negligible, velocity is zero except in the
x-direction and pressure varies only with x, and the
pressure difference between upper and lower cylinder
ends equals the external hydrostatic pressure difference.

po—p1=gpl. {8)
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It is a property of the system that axial temperature
gradient is constant, and the radial component ¢ is
independent of x. Hence, if when

x=r=0t=0 %
(10)

The equations of motion in the x-direction, conser-
vation of energy, state of the fluid, and continuity are:

t=ex+¢.
dp ufdu d*u
g =2 22
ax "9 r(dr—+_rdr2

&t 1¢ kc‘rt“_{-c”kc’t
cU—=——| kr — |+ — k—
P Tar 6r) 5x( 0x

p = po(l—pr)

J rudr = a*V

0

(1

(12)
(13)
(14)
where V is a constant. Using some of the auxiliary
relations, equation (11) is solved by separating the

variables x and r. The constant k and the dimensionless
form parameter A are introduced, where

K= del (15)
and
4
A% = ”lj;“ . (16)

Writing D for d/dr, the differential equation in u is

obtained
2 1 : ’
D*+—=D) +A*|u=0.
[( R> ]“

Conditions for u are that « is an even function of r,
and that u =0 when r = +a.

The solutions for u. ¢ and Ra are in terms of two
of the Kelvin functions namely ber and bei, and their
derivatives, ber’ and bei':

bei A ber AR —ber A bei AR

(17)

=VA 1
“ ber A ber A + bei A bei’ A (18)
1 val ber A(ber AR — 1)+ bei A bei AR
= — /\4
¢ 4 gpa* ber A (19)
d? g i i A
Ra:Qﬁq =16A5b€r/\ber/\+bex/\be1 20
vakl ber A

Using Bessel functions tables, the right side of
equation (20) is plotted against A in Fig. 1. Only the
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F1G. 1. Cylinder with fully developed temperatures. Rayleigh
number against form parameter A.



Convection from open vertical cylinder

first branch of the curve is used to cover all values of
Rayleigh number, which is the only independent vari-
able. Other dimensionless quantities are obtained as
functions of AR and A. or A only:

U< bei Aber AR —ber Abei AR

21
bei A @1
O ber Aber AR+bei Abei AR —ber A 22)
B ber? A+ bei? A—ber A -

_ ber Aber' A +beiAbei’ A
U=2 : 23
AbeiA @3

ber Aber' A+bei Abei' A
Nu=2A 24
“ ber’ A + bei’ A @4

Aber' A+beiAbei’ A
o= gp TADLATDiAbA o

ber A
U
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but as Ra increases, instead of approaching the vertical
wall solution, it tends towards a maximum value of
Nu of approximately 2.982.

It is conspicuous that the heat supply required at
the entry plane of the cylinder, to establish the radial
temperature profile, is not accounted for. This is termed
Qc. the heat flow rate across the cylinder walls Qw,
and the ratio of these two heat rates E. The dimension-
less mean temperature difference © is also required.

F1G. 2. Cylinder with fully developed temperatures. Upward velocity U, and
radial temperature @, both against radius R, for some values of A.

Figure 2 shows there is not much variation in velocity
U. and even less in radial temperature @, for the range
of A used. Figure 3 shows that the present solution
merges satisfactorily with that for the narrow cylinder,

[eX] 12 510 10

Ro

FiG. 3. Nusselt number against Rayleigh number: (1) Nar-

row cylinder: Nu = 0.125Ra%%; (2) Vertical wall: Nu =

0.619Ra®?; (3) Cylinder with fully developed temperatures,
with some values of A.

Q= [ pcpulnrdr (26)
Jo .
Qw = ndlg 27)
Ee QOr Abei A(ber? A+bei* A—ber A) L (%)
" Qw 4berA(ber Aber A+beiAbei’A) "t
1.0
0.8
0.6}
® A=)
0.4}—
02— A=2.84
| | |
0 02 04 06 08 10
R
where
1
I, = J U®RAR (29)
0
®=_9_=berzA+bei2A+ber/\ (30)

2K 4ber A

It is seen from Table 1 that, with increasing A, E
increases rapidly. As the entry plane heat supply Qf
increases in importance, the solution departs progress-
ively from a proper representation of a relatively short
cylinder.

CYLINDER WITH A THERMAL ENTRY
REGION INCLUDED

The cylinder is now extended downward to allow
the additional rate of heat supply Q across the walls.
Velocities are unchanged, and, within the heated fiuid,
the radial temperature profile. In the thermal entry
region, vertical temperature gradient is however not

Table 1. Results for overall heat transfer from vertical cylinders. for representative values of the form parameter A

A Ra Nu [S) IR E Ra, Nu,

1.0 1.020 1.218 x 10! 5120 x107! 9.80 x 1072 467 x1073 1.015 1.221 x 107}
1.5 2.820 x 10! 5532 x 107! 5.650 x 10! 1.01 x107? 257 x10°2 2.749 x 10* 5615%x107!
2.0 3.549 x 10?2 1.380 7.520 x 10! 1.06 x107! 1.00 x 10~! 3.220 x 10% 1.460

2.5 4.208 x 103 2.359 1.678 1.19 x 107! 474 x107! 2.803 x 103 2.760

2.8 6.752 x 10* 2904 1.205 x 10? 1.35x107! 4.79 1.166 x 10* 3.900
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F1G. 4. Cylinder with thermal entry region (X = 0to 1). Lower bound-
ary of heated fluid on the R-X field. Wall temperature on the T-X field.

constant. The additional length of cylinder to provide
Qr is EL Figure 4 shows the extent of the heated fluid,
and the wall temperature, in these conditions. Dimen-
sionless axial distance is made unity at the upper
boundary of the entry region, and dimensionless tem-
perature unity when ¢ = P,y .

The present values of u, I, Ra, t, § and Nu are given
the subscript “1”. The alteration in Ra is due to increase
of length from [/ to /(1+E). Hence Ra is divided by
(1 +E) to obtain Ray.

The mean wall temperature has been reduced from
0 to 8,, which is the mean height of the graph of T in
Fig. 4. The area below this graph from X =0to X =1
is termed fr and is less than 1. The ratio of Nu; to
Nu is given by

Nu, _ ) _ 2E@+20+E+1

Nu 0, 2/EO+20+1

Values of f¢ were all between 0.70 and 0.74.

Table 1 contains some values of Ra; and Nu;. The
relation of these is shown by a broken line on Fig. 5.
This is not mathematically an exact solution, since the
original distribution of r was compatible with the un-
changed u, profile, and the new t; is not. Since ¢; is
in fact too low for u;, and lower temperatures imply
a higher value of Nu, an exact overall heat-transfer
relation is expected to run slightly below the curve (4)
of Fig. 5. It is believed to be possible in principle to
obtain a compatible u-profile and t-distribution by an
iterative process between u and ¢ in the sequence

€39

(32)

This approach has been successfully applied to a similar
system using a numerical method [5].

Uy =t DU =2,

L1

°r /
2728

10 i [ S N N S i1 )
1020 50 0% 10° 10 10
Ra
FiG. 5. Nusselt number against Rayleigh number: (2) Verti-
cal wall: Nu = 0.619Ra®2%;(3) Cylinder with fully developed
temperatures; (4) Inexact solution for cylinder with thermal
entry region.

The open vertical channel with isothermal walls was
analysed by Bodoia and Osterle [6] using a finite
difference “marching” method. A uniform upward
velocity was prescribed at entry, and a transverse
velocity component included by means of the con-
tinuity equation. This method was applied to the
present problem by Dyer [7]. As accurately as can be
determined without numerical data, the Nusselt num-
ber results of Dyer coincide exactly with the curve (4)
of Fig. 5. up to its termination. At higher values of Ra
the results of Dyer merge with the relation
Nu = 0.67Rat.

CONCLUSIONS

Modification of the analysis for fully developed flow,
by providing a thermal entry region in addition, has
considerably extended its scope. The modified analysis
covers conditions from small values of Rayleigh num-
ber up to a terminal point, when the thermal entry
region exactly fills the cylinder, at Rayleigh number of
about 16 000. The results as presented are approximate,
but are capable of development to an exact state. The
idealisation employed. that motion within the heated
fluid is only in the axial direction, is not a very
restrictive one for the conditions described.
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Convection from open vertical cylinder

CONVECTION NATURELLE LAMINAIRE DANS UN CYLINDRE VERTICAL
OUVERT AVEC FLUX THERMIQUE PARIETAL UNIFORME

Résumé — Une solution est obtenue pour I'écoulement établi d’un fluide & propriétés constantes, la tem-

pérature la plus basse étant du c6té fluide. La solution est satisfaisante seulement aux faibles valeurs du

nombre de Rayleigh, jusqu'a 20 environ. c’est & dire pour des cylindres relativement longs. Une deuxiéme

solution présente de plus une région d’'établissement thermique, pour l'application a des cylindres plus

courts, au point ou lIa région d’établissement rempli de cylindre. Ce probléme n’a pas encore trouvé de

solution mathématique exacte. Les nombres de Nusselt jusqu’au point extréme, & un nombre de Rayleigh
d’environ 16 000, sont identiques & ceux obtenus par Dyer [6] avec différences finies.

LAMINARE NATURLICHE KONVEKTION IN EINEM OFFENEN VERTIKALEN
ZYLINDER MIT GLEICHFORMIGER WANDWARMESTROMDICHTE

Zusammenfassung —Es wird eine Ldsung angegeben fiir die voll ausgebildete Strémung eines Fluides
mit konstanten Stoffwerten und fiir den Fall. daB die tiefste Temperatur der mittieren Fluidtemperatur
entspricht. Dieser Fall ist nur fiir kleine Werte der Rayleigh-Zahl bis zu etwa 20 giiltig, d.h. nur fir
relativ lange Zylinder. Eine zweite Losung beriicksichtigt zusitzlich den thermischen Einlaufbereich
und kann auf kiirzere Zylinder angewandt werden. Diese Lésung kann bis zu dem Grenzfall angewandt
werden, in dem der Einlaufbereich den gesamten Zylinder umfaBt. Die L6sung konnte noch nicht
mathematisch exakt formuliert werden. Die berechneten Nusselt-Zahlen sind bis zu Rayleigh-Zahlen
von rund 16000 identisch mit den von Dyer [6] mit Hilfe der Methode finiter Differenzen
ermittelten Werte.

JJAMUHAPHASI ECTECTBEHHASI KOHBEKLIMA OT OTKPBITOI'O
BEPTUKAJIBHOIO UMJIMHAPA INMPY OOAHOPOOHOM TEIJIOBOM
NOTOKE HA CTEHKE

Annorauus — [lonyveHo pemeHse AAs NOAHOCTBIO PA3BHTOrO TEYEHHMSR XKAKOCTH C NOCTOSIHHbIMH
CBONCTBaMH, KOTIa CaMO€ HU3KOE 3Ha4€RUE TEMMNEPATYPbl KHAKOCTH PABHO e 0O bEMHOMY 3HAUYCHHIO.
Taxas cHTyauus peanu3yercs TOJBKO NPH HU3KMX 3HAYEHUAX 4ucna Penes (1o 20), T. €. AN\ LUMIAMH-
IpOB OTHOCKTENbHO GoJbllof nnuHbi. O6CYXKIaeTCA BTOPOE pelleHKe, KOTOPOE CTPOUTCS ¢ Y4eTOM
TEMJIOBOrO HAYaNbHOrO y4acTKa M OTHOCHMTCA K UMAMHAOPaM HeGonblOH I/IHHbL. DTO pellieHHe,
CNpaBe/UTHBOES N0 TOYKH, B KOTOPOH 3aKaHYHBaeTCs BXOAHAaA 06JacTh, elue HE NONYYeHO B TOYHOM
maTemaTHyeckom Bune. Uncna HyccenbTa Ha paccTOSHMM 10 KOHeMHOH TOUKH Nnpu uuchax Penen,
paBHbIX NpHMepHO 16 000, HNEHTHYHB!I 3HAYEHHUAM, NOAY4YEHHBIM [aiiepoM ¢ NOMOLLBIO KOHEYHO-
pa3HocTHOro metona [6].
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