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Ah&act-A solution is obtained for fully developed flow of a constant-property fluid, with the lowest 
temperature equal to the fluid bulk temperature. This is satisfactory only for low values of Rayleigh 
number, up to about 20, that is, for relatively long cylinders. 

A second solution has in addition a thermal entry region, for application to shorter cylinders, to 
the point where the entry region fills the cylinder. This solution has not yet been made mathematically 
exact. Nusselt numbers up to the terminal point, at Rayleigh number of about 16000, are identical with 

those for the finite difference result of Dyer [6]. 

NOMENC~~RE 

cyhnder radius; 
specific heat; 
diameter ; 
axial temperature gradient ; 
gravitational acceleration; 

9 overall heat-transfer coefficient f: - ; 
e 

thermal conductivity; 
cyimder height ; 
pressure ; 
heat flux at wall; 
radial co-ordinate; 
temperature, measured from fluid bulk 
temperature; 
velocity in x-direction; 
axial co-ordinate; 
derivative; 
constant in equation (14); 
total heat flow across walls; 
total heat supply at the entry plane. 

Greek symbols 
k 

% thermal diffusi~ty, = - ; 
PC 

8. vofume thermal expansivity; 
8, mean temperature difference between 

cylinder and fluid bulk; 

u dynamic viscosity; 

Y, kinematic viscosity, = $ ; 

Pt mass density; 

d, radial temperature component; 
K, constant in equation (15). 
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Dimension~~s quantities 

R, 

A, 

U, 

@, 

0, 

E, 

X, 

T, 

Gr, 

NU, 

RG 

Pr, 

Ra, 

f% 

r 
= -, radial co-ordinate; 

n 

= u, axial velocity; 
%a, 

ti 
= -, radial temperature; 

# *ax 
e 

= z, temperature difference; 

= g, heat supply in entry region; 
iv 

= 2 axial co-ordinate; 
El’ 

= -+-- , conventional temperature; 
mar. 

= 3, , Grashof number; 

= g, Nusselt number; 

= $, Reynolds number ; 

= 1, Prandtl number; 
a 

= GrPr, Rayleigh number; 
= RePr, P&let number. 

INTRODUCTION 

THE SYSTEM treated is a vertical cylinder open at both 
ends to a large free volume of essentially isothermal 
fluid, with a heat Aux at the cylinder walls. 

In a very narrow cylinder, with parabolic velocity 
profile, fluid temperature differing very little from the 
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wall temperature. and wall temperature increasing 
linearly with height, it is quite easily shown that 

(1) 

These equations may also be written 

Pe = aRa* (3) 

Nu = 4Ra’. (4) 

The parameters have the particular forms appropriate 
for the present system. These conditions are applicable 
only for small values of Ra, up to about 5. 

A complete solution for natural convection in cylin- 
ders will cover a range of Rayleigh numbers from the 
long narrow cylinder, at low values, through shorter 
or wider cylinders, to the vertical plane wall, at high 
values ofRa. Some relations of this kind were presented 
by Elenbaas [I], including one for the isothermal cyl- 
inder. But due to analytical difficulties these were on 
a very empirical basis. Information is given for overall 
heat transfer, but very little on fluid velocities or 
temperatures. 

Sparrow and Gregg [2] have given a similarity solu- 
tion for the vertical wall with uniform heat flux. For 
the local convection coefficient h,, at distance x from 
the foot of the wall, when Pr = 0.7. 

(5) 

Integration over the whole height I gives for the mean 
convection coefficient h 

; = 0.576 

Transformation into Nu and Gr for the cylinder does 
not alter the constant 0.576, but it has to be divided 
by Pr) = 0.931 to give 

Nu = 0.619Rai. (7) 

Solutions for steady natural convection in a closed 
region with fully-developed flow and uniform heat 
generation were given by Woodrow [3], firstly between 
wide vertical plane walls. and secondly inside a vertical 
cylinder. The rectangular co-ordinate part of this work 
was adapted to the open-ended system without heat 
generation by Wordsworth [4]. In the present paper a 
similar adaptation is made of Woodrow’s cylindrical 
co-ordinate solution. 

THEORY FOR FULLY DEVELOPED FLOW 

The idealisations are made that fluid density varies 
only in forming a buoyancy term. other properties do 
not change with temperature or pressure. viscous dissi- 
pation is negligible, velocity is zero except in the 
x-direction and pressure varies only with x, and the 
pressure difference between upper and lower cylinder 
ends equals the external hydrostatic pressure difference. 

PO-PI = 9Pl. (8) 

It is a property of the system that axial temperature 
gradient is constant. and the radial component 4 is 
independent of Y. Hence. if when 

.x = r = 0, t=O (9) 

I = rx+#. (10) 

The equations of motion in the x-direction, conser- 
vation of energy, state of the fluid, and continuity are: 

P = pot1 -m 

s 

(I 
rudr = a2V 

0 

(13) 

(14) 

where V is a constant. Using some of the auxiliary 
relations, equation (11) is solved by separating the 
variables x and r. The constant K and the dimensionless 
form parameter A are introduced, where 

and 

K = jel (1.9 

(16) 

Writing D for d/dr, the differential equation in u is 
obtained 

[(D’++D)1++b. (17) 

Conditions for u are that u is an even function of r, 
andthatu=Owhenr=ia. 

The solutions for u. 4 and Ra are in terms of two 
of the Kelvin functions namely ber and bei, and their 
derivatives, ber’ and bei’: 

u=VA 
beiAberAR-berAbeiAR 

berAber’A+beiAbei’A 
(18) 

ber A(ber AR icy; bet A bet AR (lg, 

Ra - !!!k& _ l&,5 berhber’;e;;Abei’A, (20) 

Using Bessel functions tables, the right side of 
equation (20) is plotted against A in Fig. 1. Only the 

A 

FIG. I. Cylinder with fully developed temperatures. Rayleigh 
number against form parameter A. 
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first branch of the curve is used to cover all values of 
Rayieigh number, which is the only independent vari- 
able. Other dimensionless quantities are obtained as 
functions of AR and A. or A only: 
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but as Ra increases, instead of approaching the vertical 
wall solution, it tends towards a maximum value of 
Nu of approximately 2.982. 

It is conspicuous that the heat supply required at 
the entry plane of the cylinder, to establish the radial 
temperature profile, is not accounted for. This is termed 
Qh. the heat flow rate across the cylinder walls Qw, 
and the ratio of these two heat rates E. The dimension- 
less mean temperature difference 0 is also required. 

U= 
bei A ber AR - ber A bei AR 

bei A 
(21) 

Q,= 
berAberAR+beiAbeiAR-berA 

ber2 A + be? A - ber A 
(22) 

D=2 
ber A ber’ A + bei A bei’ A 

AbeiA 
(23) 

Nu=2AberAber’A+beiAbei’A 

ber’ A + bei’ A 

Pe = 4AberAber’A+beiAbe.i’A 

berA . 

(24) 

(25) 

U 

0.6 - 
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R 

(26) 

Qw = ndlq (27) 

A bei A(ber2 A + bei A - ber A) 

4 ber A( ber A ber’ A + bei A bei’ A) 
L (28) 

R 
FIG. 2. Cylinder with fully developed temperatures. Upward velocity U, and 

radial temperature @, both against radius R, for some values of A. 

Figure 2 shows there is not much variation in velocity 
U. and even less in radial temperature CD, for the range 
of A used. Figure 3 shows that the present solution 
merges satisfactorily with that for the narrow cylinder, 

FIG. 3. Nusselt number against Rayleigh number: (1) Nar- 
row cylinder: Nu = O.l25R&s; (2) Vertical wall: Nu = 
0.619R~~.~; (3) Cylinder with fully developed temperatures, 

with some values of A. 

where 

s 

1 
I^ = UOR dR (29) 

0 

0 ber’A+bei’A+berA 

@=z= 4berA 
(30) 

It is seen from Table 1 that, with increasing A, E 
increases rapidly. As the entry plane heat supply QE 
increases in importance. the solution departs progress- 
ively from a proper representation of a relatively short 
cylinder. 

CYLINDER WITH A THERMAL ENTRY 
REGION INCLUDED 

The cylinder is now extended downward to allow 
the additional rate of heat supply QE across the walls. 
Velocities are unchanged, and, within the heated fluid, 
the radial temperature profile. In the thermal entry 
region, vertical temperature gradient is however not 

Table 1. Results for overall heat transfer from vertical cylinders. for representative values of the form parameter A 

1 .o 1.020 1.218 x10-’ 5.120 x 10-l 9.80 x 1O-2 4.67 x 1O-3 1.015 1.221 x 10-r 
1.5 2.820 x 10’ 5.532 x 10-l 5.650 x 10-l 1.01 x 10-l 2.57 x 10-l 2.749 x 10’ 5.615 x 10-l 
2.0 3.549 x 102 1.380 7.520 x 10-l 1.06 x10-’ 1.00 x10-r 3.220 x lo2 1.460 
2.5 4.208 x lo3 2.359 1.678 1.19 x 10-l 4.74 x 10-l 2.803 x lo3 2.760 
2.8 6.752 x 104 2.904 1.205 x 10’ 1.35 x10-r 4.79 1.166 x lo4 3.900 

HMTVol. 19. ho. IO-D 
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X ,< 

FIG. 4. Cylinder with thermal entry region (X = 0 to 1 j. Lower bound- 
ary ofheated fluid on the R-X field. Wall temperature on the T-X field. 

constant. The additional length of cylinder to provide 
QE is EI. Figure 4 shows the extent of the heated fluid, 
and the wall temperature, in these conditions. Dimen- 
sionless axial distance is made unity at the upper 
boundary of the entry region, and dimensionless tem- 
perature unity when t = &,. 

The present values of u, I, Ra, t, 0 and Nu are given 
the subscript “1”. The alteration in Ra is due to increase 
of length from 1 to 1(1+ E). Hence Ra is divided by 
(1 +E) to obtain Ral. 

The mean wall temperature has been reduced from 
0 to 6$, which is the mean height of the graph of T in 
Fig. 4. The area below this graph from X = 0 to X = 1 
is termed fE and is less than 1. The ratio of Nul to 
Nu is given by 

NUI 0 2EO+20+E+ 1 -=--_= Nu 8, 2f,E0+20+ 1 (31) 

Values of fE were all between 0.70 and 0.74. 
Table 1 contains some values of Ral and Nul. The 

relation of these is shown by a broken line on Fig. 5. 
This is not mathematically an exact solution, since the 
original distribution of t was compatible with the un- 
changed u1 profile, and the new t, is not. Since t 1 is 
in fact too low for ul, and lower temperatures imply 
a higher value of Nu, an exact overall heat-transfer 
relation is expected to run slightly below the curve (4) 
of Fig. 5. It is believed to be possible in principle to 
obtain a compatible u-profile and t-distribution by an 
iterative process between u and t in the sequence 

u~-‘t,+U2-t2+.... (32) 

This approach has been successfully applied to a similar 
system using a numerical method [5]. 
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FIG. 5. Nusselt number against Rayleigh number: (2) Verti- 
cal wail: Nu = 0.619Ra0.20;(3)Cylinder with fully developed 
temperatures; (4) Inexact solution for cylinder with thermal 

entry region. 

The open vertical channel with isothermal walls was 
analysed by Bodoia and Osterle [6] using a finite 
difference “marching” method. A uniform upward 
velocity was prescribed at entry, and a transverse 
velocity component included by means of the con- 
tinuity equation. This method was applied to the 
present problem by Dyer [7]. As accurately as can be 
determined without numerical data, the Nusselt num- 
ber results of Dyer coincide exactly with the curve (4) 
of Fig. 5. up to its termination. At higher values of Ra 

the results of Dyer merge with the relation 
Nu = 0.67Rak. 

CONCLUSIONS 

Modification of the analysis for fully developed flow, 
by providing a thermal entry region in addition, has 
considerably extended its scope. The modified analysis 
covers conditions from small values of Rayleigh num- 
ber up to a terminal point, when the thermal entry 
region exactly fills the cylinder, at Rayleigh number of 
about 16000. The results as presented are approximate, 
but are capable of development to an exact state. The 
idealisation employed. that motion within the heated 
fluid is only in the axial direction, is not a very 
restrictive one for the conditions described. 
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CONVECTION NATURELLE LAMINAIRE DANS UN CYLINDRE VERTICAL 
OUVERT AVEC FLUX THERMIQUE PARIETAL UNIFORME 

R&urn&Une solution est obtenue pour l’ecoulement ttabli d’un fluide a proprietts constantes, la tem- 
perature la plus basse itant du c&e fluide. La solution est satisfaisante seulement aux faibles valeurs du 
nombre de Rayleigh, jusqu’a 20 environ. c’est a dire pour des cylindres relativement longs. Une deuxieme 
solution prbente de plus une region d’etablissement thermique, pour l’application a des cylindres plus 
courts, au point oti la region d’etablissement rempli de cylindre. Ce problime n’a pas encore trouvt de 
solution mathematique exacte. Les nombres de Nusselt jusqu’au point extreme. a un nombre de Rayleigh 

d’environ 16000, sont identiques a ceux obtenus par Dyer [6] avec differences finies. 

LAMINARE NATURLICHE KONVEKTION IN EINEM OFFENEN VERTIKALEN 
ZYLINDER MIT GLEICHFGRMIGER W.4NDW;IRMESTROMDICHTE 

Zusammenfassung-Es wird eine Losung angegeben fiir die voll ausgebildete Stromung eines Fluides 
mit konstanten Stoffwerten und fur den Fall. dal3 die tiefste Temperatur der mittleren Fluidtemperatur 
entspricht. Dieser Fall ist nur fur kleine Werte der Rayleigh-Zahl bis zu etwa 20 gtiltig d.h. nur fiir 
relativ lange Zylinder. Eine zweite Losung beriicksichtigt zusltzlich den thermischen Einlaufbereich 
und kann auf kiirzere Zylinder angewandt werden. Diese Losung kann bis zu dem Grenzfall angewandt 
werden. in dem der Einlaufbereich den gesamten Zylinder umfaBt. Die Losung konnte noch nicht 
mathematisch exakt formuliert werden. Die berechneten Nusselt-Zahlen sind bis zu Rayleigh-Zahlen 
von rund 16000 identisch mit den von Dyer [6] mit Hilfe der Methode finiter Differenzen 

ermittelten Werte. 

JIAMMHAPHAR ECTECTBEHHA5I KOHBEKLIMIt OT OTKPblTOFO 
BEPTMKAJIbHOI-0 UMJIMHnPA I-IPM OnHOPOAHOM TEI-IJIOBOM 

I-IOTOKE HA ,CTEHKE 

AHAOIWHR -nOny'leHO pelUeHHe IlnR IlOnHOCTbK) pa3BHTOTO TeYeHHR XWIIKOCTII C IlOCTOIlHHblMH 

CBO~CTBaMH,KO~lIaC~MOeHH3KOe3H~'leHUeTeM~epaTypbI)I(HIIKOCTHpaBHO~06beMHOMy 3HaYeHHiO. 
TaKar criryausn peanu3yercn ronbko npn HH~KWX 3HayeHHxx wicna Penen (no 20), T. e. nnn unnmi- 
LlpOB OTHOCHTenbHO 6onbmoB nnWHbl. 06cyncnaeTcr BTOpOe peUJeHHe,KOTOpOe CTpOHTCR C y'leTOM 

TennOBOrO HaWJfbHOrO y'iaCTKa Ir OTHOCUTCR K UWIHHLlpaM He6onbuJoti MHHbl. 3TO peluesse, 

cnpaaemneeoe no T~~KA, B K0~0p0Zi 3aKaHwiaaeTcI BxonHan obnacTb,elue He nonyseeo B TOYH~M 

MaTeMaTwecKoM sune. Ywcna HyCCenbTa Ha paccTonHw4 no ~01ieli110ti TOYKH npH wcnax Penen, 

paBHblX IlpHMepHO 16000, HIleHTH'iHbI 3HaYeHHIIM. IlOnyYeHHblM AakepOM C IlOMOUlbK) KOHeYHO- 

pa3HOCTHOrO MeTOna[6]. 


